Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions.
نویسندگان
چکیده
Environmental DNA (eDNA) promises to ease noninvasive quantification of fish biomass or abundance, but its integration within conservation and fisheries management is currently limited by a lack of understanding of the influence of eDNA collection method and environmental conditions on eDNA concentrations in water samples. Water temperature is known to influence the metabolism of fish and consequently could strongly affect eDNA release rate. As water temperature varies in temperate regions (both seasonally and geographically), the unknown effect of water temperature on eDNA concentrations poses practical limitations on quantifying fish populations using eDNA from water samples. This study aimed to clarify how water temperature and the eDNA capture method alter the relationships between eDNA concentration and fish abundance/biomass. Water samples (1 L) were collected from 30 aquaria including triplicate of 0, 5, 10, 15 and 20 Brook Charr specimens at two different temperatures (7 °C and 14 °C). Water samples were filtered with five different types of filters. The eDNA concentration obtained by quantitative PCR (qPCR) varied significantly with fish abundance and biomass and types of filters (mixed-design ANOVA, P < 0.001). Results also show that fish released more eDNA in warm water than in cold water and that eDNA concentration better reflects fish abundance/biomass at high temperature. From a technical standpoint, higher levels of eDNA were captured with glass fibre (GF) filters than with mixed cellulose ester (MCE) filters and support the importance of adequate filters to quantify fish abundance based on the eDNA method. This study supports the importance of including water temperature in fish abundance/biomass prediction models based on eDNA.
منابع مشابه
A reply to Iversen et al.'s comment “Monitoring of animal abundance by environmental DNA — An increasingly obscure perspective”
We appreciate the conversation put forward by Iversen et al. (2015) in their response to our article “Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix” in the 2015 environmental DNA special issue of Biological Conservation. We agree with Iversen et al.'s concern about overly optimistic conclusions that could ...
متن کاملUse of Droplet Digital PCR for Estimation of Fish Abundance and Biomass in Environmental DNA Surveys
An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct qua...
متن کاملEstimation of Fish Biomass Using Environmental DNA
Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) usin...
متن کاملEnvironmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus)
Environmental DNA (eDNA) is revolutionizing biodiversity monitoring, occupancy estimates, and real-time detections of invasive species. In the Great Lakes, the round goby (Neogobius melanostomus), an invasive benthic fish from the Black Sea, has spread to encompass all five lakes and many tributaries, outcompeting or consuming native species; however, estimates of round goby abundance are confo...
متن کاملThe Release Rate of Environmental DNA from Juvenile and Adult Fish
The environmental DNA (eDNA) technique is expected to become a powerful, non-invasive tool for estimating the distribution and biomass of organisms. This technique was recently shown to be applicable to aquatic vertebrates by collecting extraorganismal DNA floating in the water or absorbed onto suspended particles. However, basic information on eDNA release rate is lacking, despite it being ess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology resources
دوره 16 6 شماره
صفحات -
تاریخ انتشار 2016